Find the area of the circle
a) 98π in²
b) 196π in²
c) 20π in²
d) 39π in²

Given:
Square inscribed in a circle.
Side of square = 14 in
To find:
The area of the circle
Solution:
All sides of square are equal.
Using Pythagoras theorem to find the diagonal:
[tex]\text{Diagonal}^2 = 14^2+14^2[/tex]
[tex]\text{Diagonal}^2 = 2\times14^2[/tex]
Taking square root on both sides, we get
Diagonal = [tex]14\sqrt{2}[/tex]
Diameter of the circle = Diagonal of square
= [tex]14\sqrt{2}[/tex] in
Radius of the circle = [tex]14\sqrt{2} \div 2 = 7\sqrt{2}[/tex]
Area of the circle formula:
[tex]A= \pi r^2[/tex]
Substitute r value, we get
[tex]A= \pi \times (7 \sqrt{2})^2[/tex]
[tex]A= \pi \times 98[/tex]
[tex]A= 98\pi[/tex]
The area of the circle is 98π in².