Respuesta :

Given:

Square inscribed in a circle.

Side of square = 14 in

To find:

The area of the circle

Solution:

All sides of square are equal.

Using Pythagoras theorem to find the diagonal:

[tex]\text{Diagonal}^2 = 14^2+14^2[/tex]

[tex]\text{Diagonal}^2 = 2\times14^2[/tex]

Taking square root on both sides, we get

Diagonal = [tex]14\sqrt{2}[/tex]

Diameter of the circle = Diagonal of square

                                   = [tex]14\sqrt{2}[/tex] in

Radius of the circle = [tex]14\sqrt{2} \div 2 = 7\sqrt{2}[/tex]

Area of the circle formula:

[tex]A= \pi r^2[/tex]

Substitute r value, we get

[tex]A= \pi \times (7 \sqrt{2})^2[/tex]

[tex]A= \pi \times 98[/tex]

[tex]A= 98\pi[/tex]

The area of the circle is 98π in²​.

ACCESS MORE
EDU ACCESS