Respuesta :
Answer:
It would take [tex]\tau(\ln 9 - \ln 8)[/tex] time for the capacitor to discharge from [tex]q_0[/tex] to [tex]\displaystyle \frac{8}{9} \, q_0[/tex].
It would take [tex]\tau(\ln 9 - \ln 7)[/tex] time for the capacitor to discharge from [tex]q_0[/tex] to [tex]\displaystyle \frac{7}{9}\, q_0[/tex].
Note that [tex]\ln 9 = 2\,\ln 3[/tex], and that[tex]\ln 8 = 3\, \ln 2[/tex].
Explanation:
In an RC circuit, a capacitor is connected directly to a resistor. Let the time constant of this circuit is [tex]\tau[/tex], and the initial charge of the capacitor be [tex]q_0[/tex]. Then at time [tex]t[/tex], the charge stored in the capacitor would be:
[tex]\displaystyle q(t) = q_0 \, e^{-t / \tau}[/tex].
a)
[tex]\displaystyle q(t) = \left(1 - \frac{1}{9}\right) \, q_0 = \frac{8}{9}\, q_0[/tex].
Apply the equation [tex]\displaystyle q(t) = q_0 \, e^{-t / \tau}[/tex]:
[tex]\displaystyle \frac{8}{9}\, q_0 = q_0 \, e^{-t/\tau}[/tex].
The goal is to solve for [tex]t[/tex] in terms of [tex]\tau[/tex]. Rearrange the equation:
[tex]\displaystyle e^{-t/\tau} = \frac{8}{9}[/tex].
Take the natural logarithm of both sides:
[tex]\displaystyle \ln\, e^{-t/\tau} = \ln \frac{8}{9}[/tex].
[tex]\displaystyle -\frac{t}{\tau} = \ln 8 - \ln 9[/tex].
[tex]t = - \tau \, \left(\ln 8 - \ln 9\right) = \tau(\ln 9 - \ln 8)[/tex].
b)
[tex]\displaystyle q(t) = \left(1 - \frac{1}{9}\right) \, q_0 = \frac{7}{9}\, q_0[/tex].
Apply the equation [tex]\displaystyle q(t) = q_0 \, e^{-t / \tau}[/tex]:
[tex]\displaystyle \frac{7}{9}\, q_0 = q_0 \, e^{-t/\tau}[/tex].
The goal is to solve for [tex]t[/tex] in terms of [tex]\tau[/tex]. Rearrange the equation:
[tex]\displaystyle e^{-t/\tau} = \frac{7}{9}[/tex].
Take the natural logarithm of both sides:
[tex]\displaystyle \ln\, e^{-t/\tau} = \ln \frac{7}{9}[/tex].
[tex]\displaystyle -\frac{t}{\tau} = \ln 7 - \ln 9[/tex].
[tex]t = - \tau \, \left(\ln 7 - \ln 9\right) = \tau(\ln 9 - \ln 7)[/tex].