Respuesta :
Answer:
f. wt. = 158 g/mol
Explanation:
Given:
mass = 20.83 g
Vol = 4.167 L
Pressure = 79.97 KPa x 0300987 Atm/KPa = 0.78924 Atm
T = 30°C + 273 = 303K
R = 0.08206 L·Atm/mol·K
PV = nRT = (mass/f.wt.)RT => f. wt. = mass x R x T / P x V
f. wt. = 20.83g x 0.08206 L·Atm/mol·K x 303K / 0.78924 Atm x 4.167L
= 158 g/ mol
20.83 g of a gas occupies 4.167 L at 79.97 kPa at 30.0°C. Its molecular weight is 158 g/mole.
Ideal Gas Law
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = Temperature
How to find the molecular weight ?
Molecular Weight = [tex]\frac{\text{Given Mass}}{\text{Number of moles}}[/tex]
Convert kPa into atm
atm = [tex]\frac{kPa}{101.3}[/tex]
So, 79.97 kPa = [tex]\frac{79.97\ kPa}{101.3}[/tex]
= 0.7894 atm
Convert Celsius into Kelvin
Kelvin = 273 + Celsius
Kelvin = 273 + 30.0
= 303 Kelvin
Now, first we have to find the number of moles.
Use the Ideal Gas formula to find the number of moles.
PV = nRT
n = [tex]\frac{PV}{RT}[/tex]
n = [tex]\frac{0.7894\ \text{atm} \times 4.167 L}{0.0821\ \text{L atm / mole K} \times 303\ K}[/tex]
n = [tex]\frac{3.289}{24.87}[/tex]
n = 0.1322 mole
Now put the value of number of moles in above formula to find the molecular weight
Molecular Weight = [tex]\frac{\text{Given Mass}}{\text{Number of moles}}[/tex]
= [tex]\frac{20.83}{0.1322}[/tex]
= 158 g/mole
Thus, we can say that 20.83 g of a gas occupies 4.167 L at 79.97 kPa at 30.0°C. Its molecular weight is 158 g/mole.
Learn more about the Ideal Gas Law here: https://brainly.com/question/25290815
#SPJ2