A power plant burns natural gas to supply heat to a heat engine which rejects heat to the adjacent river. The power plant produces 800 MW of electrical power and has a thermal efficiency of 38%. Determine the heat transfer rates from the natural gas and to the river, in MW.

Respuesta :

Answer:

heat transfer from natural gas is 2105.26 MW

heat transfer to river is 1305.26 MW

Explanation:

given data

power output Wn = 800 MW

efficiency = 38%

solution

we know that efficiency is express as

[tex]\eta = \frac{Wn}{Qin}[/tex]    ......................1

put here value we get

38% = [tex]\frac{800}{Qin}[/tex]  

Qin  = 2105.26 MW

so heat supply is 2105.26

so we can say

Wn = Qin - Qout

800 = 2105.26 - Qout

Qout = 2105.26 - 800

Qout = 1305.26 MW

so heat transfer from natural gas is 2105.26 MW

and heat transfer to river is 1305.26 MW

A. The heat transfer rate from natural gas is 2105.26 MW

B. The heat transfer rate to river is 1305.26 MW

Efficiency formula

Efficiency = (power output / power input) × 100

A. How to determine the heat transfer from natural gas

  • Efficiency = 38%
  • Power output = 800 MW
  • Power input =?

Power input = Power input / efficiency

Power input = 800 / 38%

Power input = 800 / 0.38

Power input = 2105.26 MW

Thus, the heat transfer from natural gas is 2105.26 MW

B. How to determine the heat transfer to the river

  • Total heat = 2105.26 MW
  • Heat used by plant = 800 MW
  • Heat to the river =?

Heat to the river = 2105.26 – 800

Heat to the river = 1305.26 MW

Learn more about efficiency:

https://brainly.com/question/2009210

ACCESS MORE
EDU ACCESS