Respuesta :
[tex]9x + v = 4x + w \\ 9x - 4x = w - v \\ 5x = w - v \\ x = \frac{w - v}{5} [/tex]
[tex]ax + 4 = 3x + b \\ ax - 3x = b - 4 \\ x(a - 3) = b - 4 \\ \frac{x(a - 3)}{(a - 3)} = \frac{b - 4}{(a - 3)} \\ x = \frac{b - 4}{(a - 3)} [/tex]
[tex]7 - wx = vx + 1 \\ - wx - vx = 1 - 7 \\ - x(w + v) = - 6 \\ x = \frac{6}{(w + v)} [/tex]
[tex]5(wx - v) = 8(x + v) \\ 5wx - 5v = 8x + 8v \\ 5wx - 8x = 5v + 8v \\ x(5w - 8) = 13v \\ x = \frac{13v}{(5w - 8)} [/tex]
Answer:
x=w-v/13
x=b-4/(a-3)
x=y+w/(5-v)
x=6/(v+w)
x=13v/(5w-8)
Step-by-step explanation:
We are to make x the subject of formula
So let's solve
9x+v=4x+w
Let's collect like terms
9x-4x=w-v
13x=w-v
Divide both sides by 13
x=w-v/13
ax+4=3x+b
Collect like terms
ax-3x=b-4
x(a-3)=b-4
x=b-4/(a-3)
5x-w=vx+y
Collect like terms
5x-vx=y+w
x(5-v)=y+w
x=y+w/(5-v)
7-wx=vx+1
Collect like terms
7-1=vx+wx
6=x(v+w)
x=6/(v+w)
5(wx-v)=8(x+v)
Open the bracket
5wx-5v=8x+8v
Collect like terms
5wx-8x=8v+5v
x(5w-8)=13v
x=13v/(5w-8)