It's in the attachment.
Thanks

Answer:
1/3
Step-by-step explanation:
Let [tex]\frac{x}{y} =\frac{m}{n} =\frac{k}{p} =t[/tex]
∴ x = yt , m = nt and k = pt
[tex]\frac{p*y*m}{x*n*k} = \frac{p*y*nt}{yt *n*pt }=\frac{t}{t^2} = \frac{1}{t}[/tex]
∴ 1/t = 3
∴ t = 1/3
∴ x = (1/3) y ⇒ y = 3x
And n = 3m and p = 3k
∴ [tex]\frac{x+m+k}{y+n+p} = \frac{x+m+k}{3x + 3m + 3k} = \frac{x+m+k}{3(x + m + k)} = \frac{1}{3}[/tex]