Respuesta :
Answer:
V[tex]_{L}[/tex] =- 8.78v
Explanation:
[tex]E^{2} _{m}[/tex]= [tex]V^{2} _{R}[/tex] + [tex](V_{L} -V _{C} )^{2}[/tex]
OR V[tex]_{L}[/tex] = V[tex]_{c}[/tex] + [tex]\sqrt{E^{2}{m} - V^{2} {R} }[/tex]
where VR = E[tex]{m}[/tex]cosФ
V[tex]_{L}[/tex] = V[tex]_{c}[/tex] + [tex]\sqrt{E^{2}_{m} - E^{2}_{m} cos^{2} }[/tex]Ф
V[tex]_{L}[/tex] = V[tex]_{c}[/tex] + [tex]{E_{m} \sqrt{1 - cos^{2} } }[/tex]Ф
V[tex]_{L}[/tex] = V[tex]_{c}[/tex] + E[tex]_{m}[/tex]sinФ
substituting the given values
V[tex]_{L}[/tex] = 5.33 + 6.34 x sin33°
V[tex]_{L}[/tex] = -8.78v
Answer: -8.81 V
Explanation:
Depending on the arrangement in a RLC circuit, we can have
From the phasor diagram
E(m)² = V(R)² + [V(L) - V(C)]², making V(L) subject of formula, we have,
V(L) = V(C) + √[E(m)² - V(R)²]
And V(R) = E(m) cosΦ, so that
V(L) = V(C) + √[E(m)² - E(m)² cos²Φ]
V(L) = V(C) + E(m)√[1 - cos²Φ]
V(L) = V(C) + E(m)sinΦ
V(L) = 5.33 + 6.34sin 33.3°
V(L) = 5.33 + 3.48
V(L) = 8.81 V
both V(L) and V(C) are 180° out of phase, so, V(C) = -8.81 V