Respuesta :
Diagram to question is attached.
Answer:
a) 56.87°
b) 35.26°
Explanation:
We are given:
[tex] ∅_1 = 40.1 [/tex]
[tex] n_1 = 1.30 [/tex]
[tex] n_2 = 1.40 [/tex]
[tex] n_3 = 1.32 [/tex]
[tex]n_4 = 1.45[/tex]
[tex] n_u = 1 [/tex]
a) To find ∅[tex]_5[/tex] in air, we use the expression:
[tex]n_1[/tex]Sin∅1 = [tex]n_u[/tex]Sin∅5
Let's substitute figures in the expression above.
We now have:
1.3 Sin40.1 = 1 Sin∅5
= 0.837 = Sin∅5
= Sin∅5 = 0.837
∅5 = [tex]Sin^-^1 0.837[/tex]
∅[tex]_5[/tex] = 56.87°
b) We use the expression:
[tex]n_u[/tex] Sin∅5=n1 Sin1= n2 Sin∅2=n3 Sin∅3=n4 Sin∅4
Since we are to look for ∅4, we have:
n4sin∅4= n_uSin∅5
= 1.45Sin∅4 = 0.837
∅[tex]_4[/tex] = 35.26°

Answer:
a)θ₅ = 56.87°
b)θ₄ = 35.24°
Explanation:
Applying Snell's Law at the interface face of first two transperant materials:
n₁sinθ₁ = n₂sinθ2₂
1.3*sin40.1° = 1.4*sinθ₂
1.4*sinθ₂ = 0.837
sinθ₂ = 0.598
Applying Snell's Law at the interface face of second and third transperant materials:
n₂sinθ₂ = n₃sinθ₃
0.837 = 1.32*sinθ₃
sinθ₃ = 0.634
Applying Snell's Law at the interface face of third and fourth transperant materials:
n₃sinθ₃ = n₄sinθ₄
0.837 = 1.45*sinθ₄
sinθ₄ = 0.577
θ₄ = 35.24°
Applying Snell's Law at the interface face of first transperant material and the air:
n₁sinθ₁ = nairsinθ₅
1.3*sin40.1° = sinθ₅
0.8374 = sinθ₅
θ₅ = 56.87°