Answer:
90% confidence interval for the mean repair cost for the VCR's is [82.396 , 90.124].
Step-by-step explanation:
We are given that a researcher records the repair cost for 27 randomly selected VCR's. A sample mean of $86.26 and standard deviation of $11.77 are subsequently computed.
Firstly, the pivotal quantity for 90% confidence interval for the true mean repair cost for the VCR's is given by;
P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean repair cost = $86.26
s = sample standard deviation = $11.77
n = sample of VCR's = 27
[tex]\mu[/tex] = true mean repair cost
Here for constructing 90% confidence interval we have used t statistics because we don't know about population standard deviation.
So, 90% confidence interval for the true mean repair cost, [tex]\mu[/tex] is ;
P(-1.706 < [tex]t_2_6[/tex] < 1.706) = 0.90 {As the critical value of t at 26 degree of
freedom are -1.706 & 1.706 with P = 5%}
P(-1.706 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 1.706) = 0.90
P( [tex]-1.706 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]1.706 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.90
P( [tex]\bar X -1.706 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X +1.706 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.90
90% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X -1.706 \times {\frac{s}{\sqrt{n} }[/tex] , [tex]\bar X +1.706 \times {\frac{s}{\sqrt{n} }[/tex] ]
= [ [tex]86.26 -1.706 \times {\frac{11.77}{\sqrt{27} }[/tex] , [tex]86.26 +1.706 \times {\frac{11.77}{\sqrt{27} }[/tex] ]
= [82.396 , 90.124]
Therefore, 90% confidence interval for the true mean repair cost for the VCR's is [82.396 , 90.124].