Answer:
Part 1) [tex]SA=40\ units^2[/tex]
Part 2) [tex]SA=6.25\ units^2[/tex]
Step-by-step explanation:
Part 1) we know that
The surface area of a square pyramid is equal to the area of the square base plus the area of its four triangular faces
so
[tex]SA=b^2+4[\frac{1}{2}(b)(h)][/tex]
we have
[tex]b=4\ units\\h=3\ units[/tex]
substitute
[tex]SA=4^2+4[\frac{1}{2}(4)(3)][/tex]
[tex]SA=16+24=40\ units^2[/tex]
Part 2) we know that
The surface are of the cube is equal to the area of its six square faces
so
[tex]SA=6b^2[/tex]
we have
[tex]b=2.5\ units[/tex]
substitute
[tex]SA=2.5^2\\SA=6.25\ units^2[/tex]