suppose theta is an angle in the standard position whose terminal side is in Quadrant 1 and sin theta = S4/S5. find the exact values of the five remaining trig functions of theta

Respuesta :

Answer:

[tex]csc(\theta)=\frac{5}{4}[/tex]

[tex]cos(\theta)=\frac{3}{5}[/tex]

[tex]sec(\theta)=\frac{5}{3}[/tex]

[tex]tan(\theta)=\frac{4}{3}[/tex]

[tex]cot(\theta)=\frac{3}{4}[/tex]

Step-by-step explanation:

step 1

Find the [tex]csc(\theta)[/tex]

we know that

[tex]csc(\theta)=\frac{1}{sin(\theta)}[/tex]

we have

[tex]sin(\theta)=\frac{4}{5}[/tex]

therefore

[tex]csc(\theta)=\frac{5}{4}[/tex]

step 2

Find the [tex]cos(\theta)[/tex]

we know that

[tex]sin^2(\theta)+cos^2(\theta)=1[/tex]

we have

[tex]sin(\theta)=\frac{4}{5}[/tex]

substitute

[tex](\frac{4}{5})^2+cos^2(\theta)=1[/tex]

[tex]cos^2(\theta)=1-(\frac{4}{5})^2[/tex]

[tex]cos^2(\theta)=1-(\frac{16}{25})[/tex]

[tex]cos^2(\theta)=(\frac{9}{25})[/tex]

square root both sides

[tex]cos(\theta)=\pm(\frac{3}{5})[/tex]

Remember that the angle theta is in quadrant I

so

The value of cosine of angle theta is positive

[tex]cos(\theta)=\frac{3}{5}[/tex]

step 3

Find the [tex]sec(\theta)[/tex]

we know that

[tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex]

we have

[tex]cos(\theta)=\frac{3}{5}[/tex]

therefore

[tex]sec(\theta)=\frac{5}{3}[/tex]

step 4

Find the value of  [tex]tan(\theta)[/tex]

we know that

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

we have

[tex]sin(\theta)=\frac{4}{5}[/tex]

[tex]cos(\theta)=\frac{3}{5}[/tex]

substitute the values

[tex]tan(\theta)=\frac{4}{3}[/tex]

step 5

Find the value of  [tex]cot(\theta)[/tex]

we know that

[tex]cot(\theta)=\frac{1}{tan(\theta)}[/tex]

we have

[tex]tan(\theta)=\frac{4}{3}[/tex]

therefore

[tex]cot(\theta)=\frac{3}{4}[/tex]

ACCESS MORE