Which equation has x = –6 as the solution?
log Subscript x Baseline 36 = 2
log Subscript 3 Baseline (2 x minus 9) = 3
log Subscript 3 Baseline 216 = x
log Subscript 3 Baseline (negative 2 x minus 3) = 2

Respuesta :

Answer:

The equation 'log Subscript 3 Baseline (negative 2 x minus 3) = 2' i.e. [tex]\log _3\left(-2x-3\right)=2[/tex]  has x = –6 as the solution.

Step-by-step explanation:

Checking the equation

log Subscript 3 Baseline (negative 2 x minus 3) = 2

Writing in algebraic expression

[tex]\log _3\left(-2x-3\right)=2[/tex]

Use the logarithmic definition

[tex]\mathrm{If}\:\log _a\left(b\right)=c\:\mathrm{then}\:b=a^c[/tex]

[tex]\log _3\left(-2x-3\right)=2\quad \Rightarrow \quad \:-2x-3=3^2[/tex]

[tex]-2x-3=3^2[/tex]

[tex]-2x-3=9[/tex]

[tex]-2x=12[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}-2[/tex]

[tex]\frac{-2x}{-2}=\frac{12}{-2}[/tex]

[tex]x=-6[/tex]

Therefore, the equation 'log Subscript 3 Baseline (negative 2 x minus 3) = 2' i.e. [tex]\log _3\left(-2x-3\right)=2[/tex]  has x = –6 as the solution.

Answer:

(-2x-3)=2

Step-by-step explanation:

ACCESS MORE