G(t)=−(t−1)2+5g, left parenthesis, t, right parenthesis, equals, minus, left parenthesis, t, minus, 1, right parenthesis, squared, plus, 5 What is the average rate of change of gggg over the interval −4≤t≤5-4\leq t\leq 5−4≤t≤5minus, 4, is less than or equal to, t, is less than or equal to, 5?

Respuesta :

The average rate of change over is 1

Explanation:

Given that the function is [tex]G(t)=-(t-1)^2+5[/tex]

We need to determine the average rate of change over the interval [tex]-4\leq t\leq 5[/tex]

The value of G(-4):

The value of G(-4) can be determined by substituting t = -4 in the function [tex]G(t)=-(t-1)^2+5[/tex]

Thus, we have,

[tex]G(-4)=-(-4-1)^2+5[/tex]

[tex]G(-4)=-(-5)^2+5[/tex]

[tex]G(-4)=-(25)+5[/tex]

[tex]G(-4)=-20[/tex]

Thus, the value of G(-4) = -20

The value of G(5):

The value of G(5) can be determined by substituting t = 5 in the function [tex]G(t)=-(t-1)^2+5[/tex], we get,

[tex]G(5)=-(5-1)^2+5[/tex]

[tex]G(5)=-(4)^2+5[/tex]

[tex]G(5)=-16+5[/tex]

[tex]G(5)=-11[/tex]

Thus, the value of G(5) is -11

Average rate of change:

The average rate of change can be determined using the formula,

[tex]\frac{G(b)-G(a)}{b-a}[/tex]

where [tex]a=-4[/tex] and [tex]b=5[/tex]

Substituting the values, we get,

[tex]\frac{G(5)-G(-4)}{5-(-4)}[/tex]

Substituting [tex]G(5)=-11[/tex] and [tex]G(-4)=-20[/tex], we get,

[tex]\frac{-11+20}{5+4}[/tex]

[tex]\frac{9}{9}=1[/tex]

Thus, the average rate of change over the interval [tex]-4\leq t\leq 5[/tex] is 1.

ACCESS MORE