Answer: [tex]\bold{\sin A=\dfrac{9\sqrt{10}}{50}\qquad \cos A=-\dfrac{13\sqrt{10}}{50}}[/tex]
Step-by-step explanation:
0° < A < 180° so it is in Quadrant I or II
since tan A is negative, it is in Quadrant II ---> (-x, +y)
[tex]\text{Given}:\tan A=\dfrac{y}{x}\ =\dfrac{9}{-13}[/tex]
Next, find the hypotenuse given that x = -13 and y = 9
(-13)² + (9)² = r²
250 = r²
5√10 = r
[tex]\sin A = \dfrac{y}{r}\quad =\dfrac{9}{5\sqrt{10}}\bigg(\dfrac{\sqrt{10}}{\sqrt{10}}\bigg)\quad =\large\boxed{\dfrac{9\sqrt{10}}{50}}\\\\\\\\\cos A = \dfrac{x}{r}\quad =\dfrac{-13}{5\sqrt{10}}\bigg(\dfrac{\sqrt{10}}{\sqrt{10}}\bigg)\quad =\large\boxed{-\dfrac{13\sqrt{10}}{50}}[/tex]