Answer:
(a) 135 kV
(b) The charge chould be moved to infinity
Explanation:
(a)
The potential at a distance of r from a point charge, Q, is given by
[tex]V = -\dfrac{kQ}{r}[/tex]
where [tex]k = 9\times 10^9 \text{ F/m}[/tex]
Difference in potential between the points is
[tex]kQ\left[-\dfrac{1}{0.2\text{ m}} -\left( -\dfrac{1}{0.1\text{ m}}\right)\right] = \dfrac{kQ}{0.2\text{ m}} = \dfrac{9\times10^9\text{ F/m}\times3\times10^{-6}\text{ C}}{0.2\text{ m}}[/tex]
[tex]PD = 135\times 10^3\text{ V} = 135\text{ kV}[/tex]
(b)
If this potential difference is increased by a factor of 2, then the new pd = 135 kV × 2 = 270 kV. Let the distance of the new location be x.
[tex]270\times10^3 = kQ\left[-\dfrac{1}{x}-\left(-\dfrac{1}{0.1\text{ m}}\right)\right][/tex]
[tex]10 - \dfrac{1}{x} = \dfrac{270000}{9\times10^9\times3\times10^{-6}} = 10[/tex]
[tex]\dfrac{1}{x} = 0[/tex]
[tex]x = \infty[/tex]
The charge chould be moved to infinity