Answer:
Therefore,
The Coordinates of the point on the directed line segment from (-10, -1) to (10,−6) that partitions the segment into a ratio of 3 to 2 is
[tex]P(x,y)=(2,-4)[/tex]
Step-by-step explanation:
Given:
Let Point P ( x , y ) divides Segment AB in the ratio 3 : 2 = m : n (say)
point A( x₁ , y₁) ≡ ( -10 , -1)
point B( x₂ , y₂) ≡ ( 10 , -6)
To Find:
point P( x , y) ≡ ?
Solution:
IF a Point P divides Segment AB internally in the ratio m : n, then the Coordinates of Point P is given by Section Formula as
[tex]x=\dfrac{(mx_{2} +nx_{1}) }{(m+n)}\\ \\and\\\\y=\dfrac{(my_{2} +ny_{1}) }{(m+n)}\\\\[/tex]
Substituting the values we get
[tex]P(x,y)=(\dfrac{(3\times 10 +2\times -10) }{(3+2)},\dfrac{(3\times -6 +2\times -1) }{(3+2)})[/tex]
[tex]P(x,y)=(\dfrac{10}{5},\dfrac{-20) }{5})[/tex]
[tex]P(x,y)=(2,-4)[/tex]
Therefore,
The Coordinates of the point on the directed line segment from (-10, -1) to (10,−6) that partitions the segment into a ratio of 3 to 2 is
[tex]P(x,y)=(2,-4)[/tex]