Answer:
a) [tex]Z = 2.25[/tex]
b) [tex]Z = 1.50[/tex]
c) [tex]Z = -1.75[/tex]
d) [tex]Z = 3.25[/tex]
e) [tex]Z = -2.25[/tex]
f) [tex]Z = 3.50[/tex]
Step-by-step explanation:
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
In this problem, we have that:
[tex]\mu = 23, \sigma = 4[/tex]
(a) x=32
z=
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{32 - 23}{4}[/tex]
[tex]Z = 2.25[/tex]
(b) x=29
z=
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{29 - 23}{4}[/tex]
[tex]Z = 1.50[/tex]
(c) x=16
z=
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{16 - 23}{4}[/tex]
[tex]Z = -1.75[/tex]
(d) x=36
z=
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{36 - 23}{4}[/tex]
[tex]Z = 3.25[/tex]
(e) x=14
z=
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{14 - 23}{4}[/tex]
[tex]Z = -2.25[/tex]
(f) x=37
z=
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{37 - 23}{4}[/tex]
[tex]Z = 3.50[/tex]