Suppose the random variable x is best described by a normal distribution with μ=23 and σ=4. Find the z-score that corresponds to each of the following x values.

(a) x=32
z=

(b) x=29
z=

(c) x=16
z=

(d) x=36
z=

(e) x=14
z=

(f) x=37
z=

Respuesta :

Answer:

a) [tex]Z = 2.25[/tex]

b) [tex]Z = 1.50[/tex]

c) [tex]Z = -1.75[/tex]

d) [tex]Z = 3.25[/tex]

e) [tex]Z = -2.25[/tex]

f) [tex]Z = 3.50[/tex]

Step-by-step explanation:

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

In this problem, we have that:

[tex]\mu = 23, \sigma = 4[/tex]

(a) x=32

z=

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{32 - 23}{4}[/tex]

[tex]Z = 2.25[/tex]

(b) x=29

z=

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{29 - 23}{4}[/tex]

[tex]Z = 1.50[/tex]

(c) x=16

z=

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{16 - 23}{4}[/tex]

[tex]Z = -1.75[/tex]

(d) x=36

z=

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{36 - 23}{4}[/tex]

[tex]Z = 3.25[/tex]

(e) x=14

z=

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{14 - 23}{4}[/tex]

[tex]Z = -2.25[/tex]

(f) x=37

z=

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{37 - 23}{4}[/tex]

[tex]Z = 3.50[/tex]

ACCESS MORE