Answer:
The value of v = [tex]\frac{3u}{2}[/tex] that minimize E.
Step-by-step explanation:
The function that gives the energy lost by a fish E(v) moving with a velocity v against the water velocity u up to a distance L is given by
[tex]E(v) = \frac{av^{3}L}{v - u}[/tex] , where a is a proportionality constant.
Now, for E(v) to be minimum the condition is [tex]\frac{dE(v)}{dv} = 0[/tex]
⇒ [tex]aL\frac{d}{dv}[\frac{v^{3}}{v - u} ] = 0[/tex]
⇒ [tex]aL[\frac{3v^{2}(v - u) - v^{3} }{(v - u)^{2} } ] = 0[/tex]
⇒ 3v³ - 3v²u - v³ = 0
⇒ 2v³ = 3v²u
⇒ v = [tex]\frac{3u}{2}[/tex]
Therefore, the value of v = [tex]\frac{3u}{2}[/tex] that minimizes E. (Answer)