Answer:
a) Mean=1.2
b) The standard deviation is [tex]\sigma=3.1[/tex]
Step-by-step explanation:
Given that the discrete probability distribution below :
Outcome Probability
0 0.35
1 0.36
2 0.14
3 0.08
4 0.04
5 0.02
6 0.01
a) To find the mean of this distribution :
The formula is [tex]E(X)=\sum X.P(X)[/tex]
X P(X) XP(X) [tex]X^2P(X)[/tex]
0 0.35 0 0
1 0.36 0.36 0.36
2 0.14 0.28 1.12
3 0.08 0.24 2.16
4 0.04 0.16 2.56
5 0.02 0.1 2.5
6 0.01 0.06 2.16
_________________________________________________
[tex]\sum XP(X)=1.2[/tex] [tex]\sum X^2P(X)=10.86[/tex]
_________________________________________________
- Now substitute the value in the formula we get
- [tex]E(X)=\sum X.P(X)[/tex]
- [tex]E(X)=1.2[/tex]
Therefore Mean=1.2
b) To find Standard Deviation :
The formula is [tex]\sigma=\sqrt{X^2P(X)-(XP(X))^2}[/tex]
- Substitute the values i the formula we have
- [tex]\sigma=\sqrt{10.86-(1.2)^2}[/tex]
- [tex]=\sqrt{10.86-1.44}[/tex]
- [tex]=\sqrt{9.42}[/tex]
- [tex]=3.0692[/tex]
Therefore the standard deviation is [tex]\sigma=3.1[/tex]