Respuesta :
Answer : The moles of [tex]CH_4[/tex], [tex]H_2O[/tex], [tex]CO[/tex] and [tex]H_2[/tex] at equilibrium is, 0 mol, 1 mol, 1.5 mol and 4.5 mol respectively.
Explanation :
First we have to calculate the concentration of [tex]CH_4\text{ and }H_2O[/tex]
[tex]\text{Concentration of }CH_4=\frac{\text{Moles of }CH_4}{\text{Volume of solution}}=\frac{1.50mol}{2.00L}=0.75M[/tex]
and,
[tex]\text{Concentration of }H_2O=\frac{\text{Moles of }H_2O}{\text{Volume of solution}}=\frac{2.50mol}{2.00L}=1.25M[/tex]
The given chemical reaction is:
[tex]CO(g)+3H_2(g)\rightleftharpoons CH_4(g)+H_2O(g)[/tex]
Initial conc. 0 0 0.75 1.25
At eqm. x 3x (0.75-x) (1.25-x)
The expression for equilibrium constant is:
[tex]K_c=\frac{[CH_4][H_2O]}{[CO][H_2]^3}[/tex]
Now put all the given values in this expression, we get:
[tex]7.7\times 10^{-23}=\frac{(0.75-x)\times (1.25-x)}{(x)\times (3x)^3}[/tex]
x = -2.19317 × 10¹⁰
x = 0.75
x = 1.25
x = 2.19317 × 10¹⁰
We are accepting value of x = 0.75 while all the values of x are neglecting because equilibrium concentration can not be more than initial concentration.
Equilibrium concentration of [tex]CH_4[/tex] = (0.75-x) = (0.75-0.75) = 0 M
Equilibrium concentration of [tex]H_2O[/tex] = (1.25-x) = (1.25-0.75) = 0.50 M
Equilibrium concentration of [tex]CO[/tex] = x = 0.75 M
Equilibrium concentration of [tex]H_2[/tex] = 3x = 3(0.75) = 2.25 M
Now we have to calculate the moles of each species in terms of mole.
Moles of [tex]CH_4[/tex] at equilibrium = [tex]0M\times 2.00L=0mol[/tex]
Moles of [tex]H_2O[/tex] at equilibrium = [tex]0.50M\times 2.00L=1mol[/tex]
Moles of [tex]CO[/tex] at equilibrium = [tex]0.75M\times 2.00L=1.5mol[/tex]
Moles of [tex]H_2[/tex] at equilibrium = [tex]2.25M\times 2.00L=4.5mol[/tex]