Answer:
So, the volume is:
[tex]\boxed{V=\frac{128\sqrt{2}\pi}{3}}[/tex]
Step-by-step explanation:
We get the limits of integration:
[tex]R=\left\lbrace(\rho, \varphi, \theta):\, 0\leq \rho \leq 4,\, \frac{\pi}{4}\leq \varphi\leq \frac{3\pi}{4},\, 0\leq \theta \leq 2\pi\right\rbrace[/tex]
We use the spherical coordinates and we calculate a triple integral:
[tex]V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\int_0^4 \rho^2 \sin \varphi \, d\rho\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \left[\frac{\rho^3}{3}\right]_0^4\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \cdot \frac{64}{3} \, d\varphi\, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} [-\cos \varphi]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\[/tex]
we get:
[tex]V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\V=\frac{64\sqrt{2}}{3}\cdot[\theta]_0^{2\pi}\\\\V=\frac{128\sqrt{2}\pi}{3}[/tex]
So, the volume is:
[tex]\boxed{V=\frac{128\sqrt{2}\pi}{3}}[/tex]