Choose the best coordinate system to find the volume of the portion of the solid sphere rho <_4 that lies between the cones φ = π/4 and φ = 3π/4

Respuesta :

Answer:

So,  the volume is:

[tex]\boxed{V=\frac{128\sqrt{2}\pi}{3}}[/tex]

Step-by-step explanation:

We get the limits of integration:

[tex]R=\left\lbrace(\rho, \varphi, \theta):\, 0\leq \rho \leq 4,\, \frac{\pi}{4}\leq \varphi\leq \frac{3\pi}{4},\, 0\leq \theta \leq 2\pi\right\rbrace[/tex]

We use the spherical coordinates and  we calculate a triple integral:

[tex]V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\int_0^4 \rho^2 \sin \varphi \, d\rho\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \left[\frac{\rho^3}{3}\right]_0^4\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \cdot \frac{64}{3} \, d\varphi\, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} [-\cos \varphi]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\[/tex]

we get:

[tex]V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\V=\frac{64\sqrt{2}}{3}\cdot[\theta]_0^{2\pi}\\\\V=\frac{128\sqrt{2}\pi}{3}[/tex]

So,  the volume is:

[tex]\boxed{V=\frac{128\sqrt{2}\pi}{3}}[/tex]

ACCESS MORE