Answer:
Ay=166.7 lb
Ax=21.2 lb
Cy=108.2 lb
Cx=2.9 lb
NE=62 lb
TBD=-55.5 lb
Explanation:
from diagram a) we have to:
∑MA=0
NE*cos70(46-30tan45)+NE*sin70(30+26)-(225*16)=0
NE(0.342*16)+NE(0.939*56)-3600=0
NE=62 lb
from the force balancing, we have:
∑Fy=0
Ay+NE*sin70-225=0
Ay+62*sin70-225=0
Ay=166.7 lb
∑Fx=0
Ax-NE*cos70=0
Ax-62*cos70=0
Ax=21.2 lb
From the b) diagram we have:
θ=tan^-1(15/(15+x)=tan^-1(15/(15+16))=25.8°
∑MC=0
-TBD*cosθ(15)-TBD*sinθ(15)-NE*cos70(30)+NE*sin70(30)=0
-TBD*cos(25.8)*(15)-TBD*sin(25.8)(15)-62*cos70(30)+62*sin70(30)=0
TBD=-55.5 lb
∑Fy=0
-Cy+NE*sin70-TBD*cos25.8=0
-Cy+62*sin70-TBD*cos25.8=0
Cy=108.2 lb
∑Fx=0
-Cx-NE*cos70-TBDsin25.8=0
Cx=2.9 lb