Answer: The rate law predicted by the given mechanism is ACI
Explanation:
In a mechanism of the reaction, the slow step in the mechanism determines the rate of the reaction.
The intermediate reaction of the mechanism follows:
Step 1: [tex]Cl_2\rightleftharpoons 2Cl;\text{ (fast)}[/tex]
Step 2: [tex]Cl+CHCl_3\rightarrow HCl+CCl_3;\text{(slow)}[/tex]
Step 3: [tex]Cl+CCl_3\rightarrow CCl_4;\text{(fast)}[/tex]
Overall reaction: [tex]Cl_2+CHCl_3\rightarrow HCl+CCl_4[/tex]
As, step 2 is the slow step. It is the rate determining step
Rate law for the reaction follows:
[tex]\text{Rate}=K_2[Cl][CHCl_3][/tex] ......(1)
As, [Cl] is not appearing as a reactant in the overall reaction. So, we apply steady state approximation in it.
Applying steady state approximation for [Cl] from step 1 and step 3, we get:
[tex]K_1=\frac{[Cl]^2}{[Cl_2]}[/tex]
[tex][Cl]=\sqrt{K_1[Cl_2]}[/tex]
[tex]K_3=\frac{[CCl_4]}{[CHCl_3][Cl]}[/tex]
[tex][Cl]=\frac{[CCl_4]}{K_3\times [CCl_3]}[/tex]
Putting the value of [Cl] in equation 1, we get:
[tex]\text{Rate}=K_2(\sqrt{K_1[Cl_2]}\times (\frac{[CCl_4]}{K_3[CCl_3]})[CHCl_3]\\\\\text{Rate}=k[Cl]^{1/2}[CCl_4][CCl_3]^{-1}[CHCl_3][/tex]
Hence, the rate law predicted by the given mechanism is ACI