contestada

A mass weighing 11 lb stretches a spring 4in. The mass is pulled down an additional 3 in and is then set in motion with an initial upward velocity of 5 ft/s. No damping is applied.
(a) Determine the position u of the mass at any time t. Use 32 ft/s² as the acceleration due to gravity. Pay close attention to the units.
(b) Determine the period, amplitude and phase of the motion.

Respuesta :

Answer:

a) [tex]x(t) = 2.845\cdot \cos \left(1.732\cdot t -0.473\pi \right)[/tex], b) [tex]T = 3.628\,s[/tex], [tex]A = 2.845\,ft[/tex], [tex]\phi = -0.473\pi[/tex]

Explanation:

a) The system mass-spring is well described by the following equation of equilibrium:

[tex]\Sigma F = k\cdot x - m\cdot g = m\cdot a[/tex]

After some handling in physical and mathematical definition, the following non-homogeneous second-order linear differential equation:

[tex]\frac{d^{2}x}{dt^{2}}+\frac{k}{m}\cdot x = g[/tex]

The solution of this equation is:

[tex]x (t) = A\cdot \cos \left(\sqrt{\frac{k}{m} } \cdot t + \phi\right)[/tex]

The velocity function is:

[tex]v(t) = \sqrt{\frac{k}{m} }\cdot A\cdot \sin \left(\sqrt{\frac{k}{m} }\cdot t +\phi \right)[/tex]

Initial conditions are:

[tex]x(0\,s) = 0.25\,ft, v(0\,s) = -5\,\frac{ft}{s}[/tex]

Equations at [tex]t = 0\,s[/tex] are:

[tex]0.25\,ft = A\cdot \cos \phi\\-5\,\frac{ft}{s} =\sqrt{\frac{k}{m} }\cdot A\cdot \sin \phi[/tex]

The spring constant is:

[tex]k = \frac{11\,lbf}{0.333\,ft}[/tex]

[tex]k = 33\,\frac{lbf}{ft}[/tex]

After some algebraic handling, amplitude and phase angle are found:

[tex]\phi = -0.473\pi[/tex]

[tex]A = 2.845\,ft[/tex]

The position can be described by this function:

[tex]x(t) = 2.845\cdot \cos \left(1.732\cdot t -0.473\pi \right)[/tex]

b) The period of the motion is:

[tex]T = \frac{2\pi}{\sqrt{\frac{k}{m} } }[/tex]

[tex]T = 3.628\,s[/tex]

The amplitude is:

[tex]A = 2.845\,ft[/tex]

The phase of the motion is:

[tex]\phi = -0.473\pi[/tex]

ACCESS MORE