Respuesta :
Answer:
a) [tex]x(t) = 2.845\cdot \cos \left(1.732\cdot t -0.473\pi \right)[/tex], b) [tex]T = 3.628\,s[/tex], [tex]A = 2.845\,ft[/tex], [tex]\phi = -0.473\pi[/tex]
Explanation:
a) The system mass-spring is well described by the following equation of equilibrium:
[tex]\Sigma F = k\cdot x - m\cdot g = m\cdot a[/tex]
After some handling in physical and mathematical definition, the following non-homogeneous second-order linear differential equation:
[tex]\frac{d^{2}x}{dt^{2}}+\frac{k}{m}\cdot x = g[/tex]
The solution of this equation is:
[tex]x (t) = A\cdot \cos \left(\sqrt{\frac{k}{m} } \cdot t + \phi\right)[/tex]
The velocity function is:
[tex]v(t) = \sqrt{\frac{k}{m} }\cdot A\cdot \sin \left(\sqrt{\frac{k}{m} }\cdot t +\phi \right)[/tex]
Initial conditions are:
[tex]x(0\,s) = 0.25\,ft, v(0\,s) = -5\,\frac{ft}{s}[/tex]
Equations at [tex]t = 0\,s[/tex] are:
[tex]0.25\,ft = A\cdot \cos \phi\\-5\,\frac{ft}{s} =\sqrt{\frac{k}{m} }\cdot A\cdot \sin \phi[/tex]
The spring constant is:
[tex]k = \frac{11\,lbf}{0.333\,ft}[/tex]
[tex]k = 33\,\frac{lbf}{ft}[/tex]
After some algebraic handling, amplitude and phase angle are found:
[tex]\phi = -0.473\pi[/tex]
[tex]A = 2.845\,ft[/tex]
The position can be described by this function:
[tex]x(t) = 2.845\cdot \cos \left(1.732\cdot t -0.473\pi \right)[/tex]
b) The period of the motion is:
[tex]T = \frac{2\pi}{\sqrt{\frac{k}{m} } }[/tex]
[tex]T = 3.628\,s[/tex]
The amplitude is:
[tex]A = 2.845\,ft[/tex]
The phase of the motion is:
[tex]\phi = -0.473\pi[/tex]