The following series are geometric series or a sum of two geometric series. Determine whether each series converges or not. For the series which converge, enter the sum of the series. For the series which diverges enter "DIV" (without quotes).
a. Σ[infinity] n=0 2^n/9^2n + 1 = _________b. Σ[infinity] n=1 7^n/7^n + 4 = ________c. Σ[infinity] n=1 5^n + 2^n/6^n = _______

Respuesta :

Answer:

Required solution gives series (a) divergent, (b) convergent, (c) divergent.

Step-by-step explanation:

(a) Given,

[tex]\sum_{n\to 0}^{\infty}\frac{2^n}{9^{2n}+1}[/tex]

To applying limit comparison test, let  [tex]a_n=\frac{2^n}{9^{2n}+1}[/tex] and [tex]b_n=\frac{9^{2n}}{2^n}[/tex]. Then,

[tex]\lim_{n\to\infty} \frac{a_n}{b_n}=\lim_{n\to\infty}(1+\frac{1}{9^{2n}})=1>0[/tex]

Because of the existance of limit and the series  [tex]\frac{9^{2n}}{2^n}[/tex] is divergent since [tex]\frac{9^{2n}}{2^n}=(\frac{9^2}{2})^n[/tex] where [tex]\frac{81}{2}>1[/tex], given series is divergent.  

(b) Given,

[tex]\sum_{n\to 1}^{\infty}(\frac{7^n}{7^n+4})[/tex]

Again to apply limit comparison test let [tex]a_n=\frac{7^n}{7^n+4}[/tex] and [tex]b_n=\frac{1}{7^n}[/tex] we get,

[tex]\lim_{n\to \infty}\frac{a_n}{b_n}=\frac{1}{7^n+4}=0[/tex]

Since [tex]\lim_{n\to \infty} \frac{1}{7^n}=0[/tex] is convergent, by comparison test, given series is convergent.

(c) Given,

[tex]\sum_{n\to 1}^{\infty}\frac{5^n+2^n}{6^n}= \sum_{n\to 1}^{\infty}(\frac{5}{6})^n+\sum_{n\to 1}^{\infty}(\frac{1}{3})^n[/tex] . Now applying Cauchy Root test on last two series, we will get,

  • \lim_{n\to \infty}|(\frac{5}{6})^n|^{\frac{1}{n}}=\frac{5}{6}=L_1
  • \lim_{n\to \infty}|(\frac{1}{3})^n|^{\frac{1}{n}}=\frac{1}{3}=L_2

Therefore,

[tex]\lim_{n\to \infty}\frac{5^n+2^n}{6^n}=L_1+L_2=1.16>1[/tex]

Hence by Cauchy root test given series is divergent.

ACCESS MORE