A right circular cone has a volume of 321 cubic feet. The height of the cone is 6 feet.
What is the length of the radius?
A:3ft
B:4ft
C:5ft
D:6ft

Respuesta :

Answer:

Radius of the cone = [tex]\sqrt{51.12}feet[/tex]

Step-by-step explanation:

Volume of a cone:

                                 [tex]\pi *r^2*\frac{h}{3}[/tex]

For volume=321 feet^3 and

Height= 6 feet

[tex]321=\pi *r^2*\frac{h}{3}[/tex]

As, [tex]\pi =\frac{22}{7}=3.14[/tex]

So ,

           [tex]321=3.14*r^2*\frac{6}{3}[/tex]

            [tex]321=3.14*2*r^2\\\\321=6.28*r^2\\\\r^2=321/6.28\\\\r^2=51.12\\\\r=\sqrt{51.12}feet[/tex]

So, the Radius of the cone is [tex]\sqrt{51.12}feet[/tex]

Answer:

(A) 3 ft

Step-by-step explanation:

ACCESS MORE