Answer:
Perimeter of the rectangle=[tex]20+2\sqrt{104}[/tex]
Step-by-step explanation:
The perimeter of the rectangle with the given coordinates is the sum of its all four sides:
Let the points be A(1,-4), B(1,6), C(3,-4) and D(3,6)
Finding the sides of the rectangle using the Distance formula:
AB=
[tex]\sqrt{(1-1)^2+(6-(-4))^2} \\\\=\sqrt{0+10^2} \\\\=\sqrt{100}\\\\ =10[/tex]
BC
[tex]=\sqrt{(3-1)^2+(-4-6)^2} \\\\=\sqrt{2^2+(-10)^2}\\\\ =\sqrt{4+100} \\\\=\sqrt{104}[/tex]
CD=
[tex]\sqrt{(3-3)^2+(6-(-4))^2} \\\\=\sqrt{0+10^2} \\\\=\sqrt{100} \\\\=10[/tex]
AD=
[tex]\sqrt{(3-1)^2+(6-(-4))^2} \\\\=\sqrt{2^2+10^2} \\\\=\sqrt{4+100}\\\\ =\sqrt{104}[/tex]
Perimeter of the rectangle=AB+BC+CD+AD
=[tex]10+\sqrt{104}+ 10+\sqrt{104}[/tex]
Perimeter of the rectangle=[tex]20+2\sqrt{104}[/tex]