A rectangle in the xy-coordinate plane is formed by the points (1,−4), (1,6), (3,−4), and (3,6). What is the perimeter of this rectangle?

Respuesta :

Answer:

Perimeter of the rectangle=[tex]20+2\sqrt{104}[/tex]

Step-by-step explanation:

The perimeter of the rectangle with the given coordinates is the sum of its all four sides:

Let the points be A(1,-4), B(1,6), C(3,-4) and D(3,6)

Finding the sides of the rectangle using the Distance formula:

AB=

               [tex]\sqrt{(1-1)^2+(6-(-4))^2} \\\\=\sqrt{0+10^2} \\\\=\sqrt{100}\\\\ =10[/tex]

BC

            [tex]=\sqrt{(3-1)^2+(-4-6)^2} \\\\=\sqrt{2^2+(-10)^2}\\\\ =\sqrt{4+100} \\\\=\sqrt{104}[/tex]

CD=

             [tex]\sqrt{(3-3)^2+(6-(-4))^2} \\\\=\sqrt{0+10^2} \\\\=\sqrt{100} \\\\=10[/tex]

AD=

            [tex]\sqrt{(3-1)^2+(6-(-4))^2} \\\\=\sqrt{2^2+10^2} \\\\=\sqrt{4+100}\\\\ =\sqrt{104}[/tex]

 Perimeter of the rectangle=AB+BC+CD+AD

                                    =[tex]10+\sqrt{104}+ 10+\sqrt{104}[/tex]

Perimeter of the rectangle=[tex]20+2\sqrt{104}[/tex]

ACCESS MORE