Respuesta :
Answer:
The velocity of the steam at nozzle exit [tex]V_{2}[/tex] = 383.74 [tex]\frac{m}{s}[/tex]
The volume flow rate at nozzle exit Q = 0.958 [tex]\frac{m^{3} }{sec}[/tex]
Explanation:
Pressure at inlet [tex]P_{1}[/tex] = 0.6 M pa = 600 k pa
Velocity at inlet [tex]V_{1}[/tex] = 5 [tex]\frac{m}{s}[/tex]
Temperature at inlet [tex]T_{1}[/tex] = 300 °c = 573 K
Temperature at outlet [tex]T_{2}[/tex] = 250 °c = 523 K
Gas constant for steam R = 0.462 [tex]\frac{KJ}{kg K}[/tex]
Pressure at outlet [tex]P_{2}[/tex] = 0.2 M pa = 200 k pa
Inlet area [tex]A_{1}[/tex] = 0.07 [tex]m^{2}[/tex]
Heat loss Q = 20 KW
(a). Apply steady flow energy equation for the nozzle,
[tex]h_{1} + \frac{V_{1} ^{2} }{2000} - Q = h_{2} + \frac{V_{2} ^{2} }{2000}[/tex]
⇒ 1.8723 ( 573 - 523 ) + [tex]\frac{5^{2} }{2000}[/tex] - 20 = [tex]\frac{V_{2} ^{2} }{2000}[/tex]
⇒ [tex]\frac{V_{2} ^{2} }{2000}[/tex] = 93.615 + 0.0125 - 20
⇒ [tex]V_{2} ^{2}[/tex] = 147255
⇒ [tex]V_{2}[/tex] = 383.74 [tex]\frac{m}{s}[/tex]
This is the velocity of the steam at nozzle exit.
(b). We know that mass flow rate through the nozzle is constant at inlet and outlet and given by
m = [tex]\rho_{1} A_{1} V_{1}[/tex] = [tex]\rho_{2} A_{2} V_{2}[/tex] --------- ( 1 )
[tex]\rho_{1} = \frac{P_{1} }{ R T_{1} }[/tex]
Put all the values in above equation we get,
[tex]\rho_{1} = \frac{600}{0.462} \frac{1}{573}[/tex]
[tex]\rho_{1}[/tex] = 2.266 [tex]\frac{kg}{m^{3} }[/tex]
Similarly
[tex]\rho_{2} = \frac{P_{2} }{ R T_{2} }[/tex]
[tex]\rho_{2}[/tex] = [tex]\frac{200}{0.462}[/tex] × [tex]\frac{1}{523}[/tex]
[tex]\rho_{2}[/tex] = 0.8277 [tex]\frac{kg}{m^{3} }[/tex]
Now put all the values in equation (1),
⇒ 2.266 × 0.07 × 5 = 0.8277 × [tex]A_{2}[/tex] × [tex]V_{2}[/tex]
⇒ [tex]A_{2}[/tex] × [tex]V_{2}[/tex] = 0.958 [tex]\frac{m^{3} }{sec}[/tex]
⇒ Q = [tex]A_{2}[/tex] × [tex]V_{2}[/tex] = 0.958 [tex]\frac{m^{3} }{sec}[/tex]
This is the volume flow rate at nozzle exit.