Respuesta :
Answer:
Therefore the critical point is (x,y)= [tex](-\frac12,0)[/tex].
Therefore [tex](-\frac12,0)[/tex] is local minimum.
Step-by-step explanation:
Given function is
[tex]z=f(x,y)=8x^2+2xy+5x+y^2+y+6[/tex]
The partial derivatives of z are
[tex]\frac{\partial z}{\partial x}= 8.2x+2y+5=16x+2y+5[/tex]
and
[tex]\frac{\partial z}{\partial y}=2x+2y+1[/tex]
To find the critical point, setting the partial derivatives equal to zero.
∴16x+2y+5 =0......(1) and 2x+2y+1=0.......(2)
Now solving the above equation,
Subtract equation (2) from equation (1)
16x+2y+5-( 2x+2y+1)=0
⇒16x+2y+5-2x-2y-1=0
⇒8x+4=0
⇒ 8x = -4
[tex]\Rightarrow x=-\frac{4}{8}[/tex]
[tex]\Rightarrow x= -\frac{1}{2}[/tex]
Now putting the value of x in (2)
[tex]2.(-\frac12)+2y+1=0[/tex]
[tex]\Rightarrow -1 +2y+1=0[/tex]
⇒2y=0
⇒y=0
Therefore the critical point is (x,y)= [tex](-\frac12,0)[/tex].
Second order partial derivatives are
[tex]\frac{\partial^2 z}{\partial x^2 }= 16[/tex] ,[tex]\frac{\partial^2 z}{\partial y^2 }= 2[/tex] and [tex]\frac{\partial^2 z}{\partial x \partial y}= \frac{\partial^2 z}{\partial y \partial x} =2[/tex]
The discriminant
[tex]D= \frac{\partial^2 z}{\partial x^2 }.\frac{\partial^2 z}{\partial y^2 }-(\frac{\partial^2 z}{\partial x \partial y})^2[/tex]
[tex]=16+2-(2)^2[/tex]
=14>0
D[tex](-\frac12,0)[/tex] = 14 >0, Then at [tex](-\frac12,0)[/tex] is either local minimum or local maximum.
Since [tex]\frac{\partial^2 z}{\partial x^2 } \right} | _{(-\frac12,0)}= 16>0[/tex], So the function is concave up.
Therefore [tex](-\frac12,0)[/tex] is local minimum.