Find the critical points of the given function and then determine whether it is a local maximum, local minimum, or saddle point. f(x, y) = 8x2 + 2xy + 5x + y2 + y + 6 critical point classification (x, y ) =

Respuesta :

Answer:

Therefore the critical point is (x,y)= [tex](-\frac12,0)[/tex].

Therefore [tex](-\frac12,0)[/tex] is local minimum.

Step-by-step explanation:

Given function is

[tex]z=f(x,y)=8x^2+2xy+5x+y^2+y+6[/tex]

The partial derivatives of z are

[tex]\frac{\partial z}{\partial x}= 8.2x+2y+5=16x+2y+5[/tex]

and  

[tex]\frac{\partial z}{\partial y}=2x+2y+1[/tex]

To find the critical point, setting the partial derivatives equal to zero.

∴16x+2y+5 =0......(1) and 2x+2y+1=0.......(2)

Now solving the above equation,

Subtract equation (2) from equation (1)

16x+2y+5-( 2x+2y+1)=0

⇒16x+2y+5-2x-2y-1=0

⇒8x+4=0

⇒ 8x = -4

[tex]\Rightarrow x=-\frac{4}{8}[/tex]

[tex]\Rightarrow x= -\frac{1}{2}[/tex]

Now putting the value of x in (2)

[tex]2.(-\frac12)+2y+1=0[/tex]

[tex]\Rightarrow -1 +2y+1=0[/tex]

⇒2y=0

⇒y=0

Therefore the critical point is (x,y)= [tex](-\frac12,0)[/tex].

Second order partial derivatives are

[tex]\frac{\partial^2 z}{\partial x^2 }= 16[/tex] ,[tex]\frac{\partial^2 z}{\partial y^2 }= 2[/tex] and [tex]\frac{\partial^2 z}{\partial x \partial y}= \frac{\partial^2 z}{\partial y \partial x} =2[/tex]

The discriminant

[tex]D= \frac{\partial^2 z}{\partial x^2 }.\frac{\partial^2 z}{\partial y^2 }-(\frac{\partial^2 z}{\partial x \partial y})^2[/tex]

  [tex]=16+2-(2)^2[/tex]

  =14>0

D[tex](-\frac12,0)[/tex] = 14 >0, Then at [tex](-\frac12,0)[/tex] is either local minimum or local maximum.

Since  [tex]\frac{\partial^2 z}{\partial x^2 } \right} | _{(-\frac12,0)}= 16>0[/tex], So the function is concave up.

Therefore [tex](-\frac12,0)[/tex] is local minimum.

ACCESS MORE