Answer:
[tex]\theta \approx 13.659^{\textdegree}[/tex]
Explanation:
First, let calculate the kinetic energy of the car:
[tex]K = \frac{1}{2}\cdot (91\,kg)\cdot (1.29\,\frac{m}{s} )^{2}[/tex]
[tex]K = 75.717\,J[/tex]
The angle from the vertical is:
[tex]U_{g} = K[/tex]
[tex]K = m\cdot g\cdot (1-\cos \theta)\cdot l[/tex]
[tex]\cos\theta =1 - \frac{K}{m\cdot g \cdot l}[/tex]
[tex]\theta = \cos^{-1} \left(1 - \frac{K}{m\cdot g \cdot l} \right)[/tex]
[tex]\theta = \cos^{-1} \left[1 - \frac{75.717\,J}{(91\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (3\,m)} \right][/tex]
[tex]\theta \approx 13.659^{\textdegree}[/tex]