Answer:
[tex]a = 13.758\,\frac{m}{s^{2}}[/tex]
Explanation:
First, the instant associated to the angular displacement is:
[tex](1.10\,\frac{rad}{s} )\cdot t + (6.30\,\frac{rad}{s^{3}} )\cdot t^{2} - 0.628\,rad = 0[/tex]
Roots of the second-order polynomial are:
[tex]t_{1} \approx 0.240\,s, t_{2} \approx -0.415\,s[/tex]
Only the first root is physically reasonable.
The angular velocity is obtained by deriving the angular displacement function:
[tex]\omega (0.240\,s) = 1.10\,\frac{rad}{s}+ (12.6\,\frac{rad}{s^{2}})\cdot (0.240\,s)[/tex]
[tex]\omega (0.240\,s) = 4.124\,\frac{rad}{s}[/tex]
The angular acceleration is obtained by deriving the previous function:
[tex]\alpha (0.240\,s) = 12.6\,\frac{rad}{s^{2}}[/tex]
The resultant linear acceleration on the rim of the disk is:
[tex]a_{t} = (0.650\,m)\cdot (12.6\,\frac{rad}{s^{2}} )[/tex]
[tex]a_{t} = 8.190\,\frac{m}{s^{2}}[/tex]
[tex]a_{n} = (0.650\,m)\cdot (4.124\,\frac{rad}{s} )^{2}[/tex]
[tex]a_{n} = 11.055\,\frac{m}{s^{2}}[/tex]
[tex]a = \sqrt{a_{t}^{2}+a_{n}^{2}}[/tex]
[tex]a = 13.758\,\frac{m}{s^{2}}[/tex]