Answer: The rate constant at 56°C is [tex]11.58M^{-1}s^{-1}[/tex]
Explanation:
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
[tex]\ln(\frac{K_{56^oC}}{K_{-8^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_{-8^oC}[/tex] = equilibrium constant at -8°C = [tex]0.14M^{-1}s^{-1}[/tex]
[tex]K_{56^oC}[/tex] = equilibrium constant at 56°C = ?
[tex]E_a[/tex] = Activation energy = 50.0 kJ/mol = 50000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
[tex]T_1[/tex] = initial temperature = [tex]-8^oC=[273-8]K=265K[/tex]
[tex]T_2[/tex] = final temperature = [tex]56^oC=[273+56]K=329K[/tex]
Putting values in above equation, we get:
[tex]\ln(\frac{K_{56^oC}}{0.14})=\frac{50000J}{8.314J/mol.K}[\frac{1}{265}-\frac{1}{329}]\\\\K_{56^oC}=11.58M^{-1}s^{-1}[/tex]
Hence, the rate constant at 56°C is [tex]11.58M^{-1}s^{-1}[/tex]