Respuesta :
Answer:
aaksj
Explanation:
a) the capacitance is given of a plate capacitor is given by:
C = \epsilon_0*(A/d)
Where \epsilon_0 is a constant that represents the insulator between the plates (in this case air, \epsilon_0 = 8.84*10^(-12) F/m), A is the plate's area and d is the distance between the plates. So we have:
The plates are squares so their area is given by:
A = L^2 = 0.19^2 = 0.0361 m^2
C = 8.84*10^(-12)*(0.0361/0.0077) = 8.84*10^(-12) * 4.6883 = 41.444*10^(-12) F
b) The charge on the plates is given by the product of the capacitance by the voltage applied to it:
Q = C*V = 41.444*10^(-12)*120 = 4973.361 * 10^(-12) C = 4.973 * 10^(-9) C
c) The electric field on a capacitor is given by:
E = Q/(A*\epsilon_0) = [4.973*10^(-9)]/[0.0361*8.84*10^(-12)]
E = [4.973*10^(-9)]/[0.3191*10^(-12)] = 15.58*10^(3) V/m
d) The energy stored on the capacitor is given by:
W = 0.5*(C*V^2) = 0.5*[41.444*10^(-12) * (120)^2] = 298396.8*10^(-12) = 0.298 * 10 ^6 J
Answer:
a. [tex]C=2.18*10^{-10}F[/tex]
b. [tex]Q=2.62*10^{-8}C[/tex]
c. [tex]E= 15584V/m[/tex]
d. [tex]energy=3.14*10^{-2}J[/tex]
Explanation:
The question give:
- Area: [tex]A=0.190m^{2}[/tex]
- separated distance: [tex]d=0.770cm, d=0.0077m[/tex]
- and voltage: [tex]V=120volts[/tex]
- [tex]E_{0}[/tex] =[tex]8.854*10^{-12}C^{2}/Nm^{2}[/tex]
a. To find the capacitance we can use
C=[tex]\frac{E_{0}A }{d}[/tex] since we have d A and [tex]E_{0}[/tex], where
C=[tex]8.854*10^{-12}C^{2}/Nm^{2}*0.190m^{2}/0.0077m[/tex]
C=[tex]2.18*10^{-10}F[/tex]
b.To find charge we have to use:
[tex]Q=CV[/tex] since
[tex]Q=(2.18*10^{-10}F)*(120v)[/tex]
[tex]Q=2.62*10^{-8}C[/tex]
c. To find electric field between the plates, that is potential difference between two plates:
E= [tex]\frac{V}{d}[/tex] E= [tex]\frac{120}{0.0077}[/tex]
[tex]E= 15584V/m[/tex]
d.To find energy stored in the capacitor:
we can use
energy=[tex]\frac{1}{2}[/tex]C[tex]V^{2}[/tex]
energy=[tex](2.18*10^{-10}F *120^{2})/2[/tex]
energy=[tex]3.14*10^{-2}J[/tex]