Answer:
[tex]m_{o} \approx 3.247\times 10^{-7}\,g[/tex]
Explanation:
The mass of radioactive isotope at a certain time is given by the following expression:
[tex]m(t) = m_{o}\cdot e^{-\frac{t}{\tau} }[/tex]
Time constant can be calculed in terms of half-life:
[tex]\tau = \frac{t_{1/2}}{\ln 2}[/tex]
[tex]\tau = \frac{1.26\times 10^{9}\,yr}{\ln 2}[/tex]
[tex]\tau = 1.818\times 10^{9}\,yr[/tex]
The initial mass is:
[tex]m_{o} = \frac{2.73\times 10^{-7}\,g}{e^{-\frac{3.15\times 10^{8}\,yr}{1.818\times 10^{9}\,yr} }}[/tex]
[tex]m_{o} \approx 3.247\times 10^{-7}\,g[/tex]