Answer:
pH=4.88
[tex][HCN]_{eq}=0.43699M[/tex]
[tex][CN^-]_{eq}=1.322x10^{-5}M[/tex]
Explanation:
Hello,
In this case, the undergoing dissociation reaction is:
[tex]HCN(aq)+H_2O(l)\rightleftharpoons H_3O^+(aq)+CN^-(aq)[/tex]
In such a way, the law of mass action becomes:
[tex]Ka=\frac{[H^+]_{eq}[CN^-]_{eq}}{[HCN]_{eq}}[/tex]
Which in terms of the change [tex]x[/tex] due to the reaction extent, goes:
[tex]Ka=\frac{(x)(x)}{0.437-x}=4.0x10^{-10}[/tex]
Thus, solving for [tex]x[/tex] by either quadratic equation or solver, the results are:
[tex]x_1=1.322x10^{-5}M\\x_2=-1.322x10^{-5}M[/tex]
Clearly, the answer is:
[tex]x_1=1.322x10^{-5}M[/tex]
In this manner, since [tex]x[/tex] equals the concentration of hydrogen ions, the pH turns out:
[tex]pH=-log([H^+])=-log(1.322x10^{-5})=4.88[/tex]
And the concentration of the HCN and the CN⁻:
[tex][HCN]_{eq}=0.437M-1.322x10^{-5}M=0.43699M[/tex]
[tex][CN^-]_{eq}=1.322x10^{-5}M[/tex]
Best regards.