Jane wishes to bake an apple pie for dessert. The baking instructions say that she should bake the pie in an oven at a constant temperature of 230◦C. Being a mathematician, she knows that the temperature T of the pie after t minutes of baking will be given by T(t) = 230 − Ae−kt , where A and k are constants. After 18 minutes of baking she notices that the temperature of the pie is 138◦C, while after 36 minutes it is 184◦C. Determine the constants A and k.

Respuesta :

Answer:

Therefore [tex]k= \frac{ln2 }{18}[/tex], A=184

Step-by-step explanation:

Given function is

[tex]T(t)=230 -e^{-kt}[/tex]

where T(t) is the temperature in °C and t is time in minute and A and k are constants.

She noticed that after 18 minutes the temperature of the pie is 138°C

Putting T(t) =138°C and t= 18 minutes

[tex]138=230 -Ae^{-k\times 18}[/tex]

[tex]\Rightarrow -Ae^{-18k}=138-230[/tex]

[tex]\Rightarrow Ae^{-18k}=92[/tex] .....(1)

Again after 36 minutes it is 184°C

Putting T(t) =184°C and t= 36 minutes

[tex]184=230-Ae^{-k\times 36}[/tex]

[tex]\Rightarrow Ae^{-36k}=230-184[/tex]

[tex]\Rightarrow Ae^{-36k}=46[/tex].......(2)

Dividing (2) by (1)

[tex]\frac{Ae^{-36k}}{Ae^{-18k}}=\frac{46}{92}[/tex]

[tex]\Rightarrow e^{-18k}=\frac{46}{92}[/tex]

Taking ln both sides

[tex]ln e^{-18k}=ln\frac{46}{92}[/tex]

[tex]\Rightarrow -18k =ln (\frac12)[/tex]

[tex]\Rightarrow -18k= ln1-ln2[/tex]

[tex]\Rightarrow k= \frac{ln2 }{18}[/tex]

Putting the value k in equation (1)

[tex]Ae^{-18\frac{ln2}{18}}=92[/tex]

[tex]\Rightarrow A e^{ln2^{-1}}=92[/tex]

[tex]\Rightarrow A.2^{-1}=92[/tex]

[tex]\Rightarrow \frac{A}{2}=92[/tex]

[tex]\Rightarrow A= 92 \times 2[/tex]

⇒A= 184.

Therefore [tex]k= \frac{ln2 }{18}[/tex], A=184

ACCESS MORE