Answer:
Therefore [tex]k= \frac{ln2 }{18}[/tex], A=184
Step-by-step explanation:
Given function is
[tex]T(t)=230 -e^{-kt}[/tex]
where T(t) is the temperature in °C and t is time in minute and A and k are constants.
She noticed that after 18 minutes the temperature of the pie is 138°C
Putting T(t) =138°C and t= 18 minutes
[tex]138=230 -Ae^{-k\times 18}[/tex]
[tex]\Rightarrow -Ae^{-18k}=138-230[/tex]
[tex]\Rightarrow Ae^{-18k}=92[/tex] .....(1)
Again after 36 minutes it is 184°C
Putting T(t) =184°C and t= 36 minutes
[tex]184=230-Ae^{-k\times 36}[/tex]
[tex]\Rightarrow Ae^{-36k}=230-184[/tex]
[tex]\Rightarrow Ae^{-36k}=46[/tex].......(2)
Dividing (2) by (1)
[tex]\frac{Ae^{-36k}}{Ae^{-18k}}=\frac{46}{92}[/tex]
[tex]\Rightarrow e^{-18k}=\frac{46}{92}[/tex]
Taking ln both sides
[tex]ln e^{-18k}=ln\frac{46}{92}[/tex]
[tex]\Rightarrow -18k =ln (\frac12)[/tex]
[tex]\Rightarrow -18k= ln1-ln2[/tex]
[tex]\Rightarrow k= \frac{ln2 }{18}[/tex]
Putting the value k in equation (1)
[tex]Ae^{-18\frac{ln2}{18}}=92[/tex]
[tex]\Rightarrow A e^{ln2^{-1}}=92[/tex]
[tex]\Rightarrow A.2^{-1}=92[/tex]
[tex]\Rightarrow \frac{A}{2}=92[/tex]
[tex]\Rightarrow A= 92 \times 2[/tex]
⇒A= 184.
Therefore [tex]k= \frac{ln2 }{18}[/tex], A=184