Respuesta :
Answer:
Step-by-step explanation:
We would use the t- distribution.
From the information given,
Mean, μ = 34 inches
Standard deviation, σ = 7 inches
number of sample, n = 15
Degree of freedom, (df) = 15 - 1 = 14
Alpha level,α = (1 - confidence level)/2
α = (1 - 0.99)/2 = 0.005
We will look at the t distribution table for values corresponding to (df) = 14 and α = 0.005
The corresponding z score is 2.977
We will apply the formula
Confidence interval
= mean ± z ×standard deviation/√n
It becomes
34 ± 2.977 × 7/√15
= 34 ± 2.977 × 1.81
= 34 ± 5.39
The lower end of the confidence interval is 34 - 5.39 =28.61
The upper end of the confidence interval is 34 + 5.39 =39.39
Answer:
99% confidence interval for the population mean is [29.34 , 38.65].
Step-by-step explanation:
We are given that heights of dogs, in inches, in a city are normally distributed and have a known population standard deviation of 7 inches and an unknown population mean.
A random sample of 15 dogs is taken and gives a sample mean of 34 inches.
So, the pivotal quantity for 99% confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample mean = 34 inches
[tex]\sigma[/tex] = population standard deviation = 7 inches
n = sample of dogs = 15
[tex]\mu[/tex] = population mean
So, 99% confidence interval for the average age, [tex]\mu[/tex] is ;
P(-2.5758 < N(0,1) < 2.5758) = 0.99
P(-2.5758 < [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 2.5758) = 0.99
P( [tex]-2.5758 \times {\frac{\sigma}{\sqrt{n} }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.5758 \times {\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.99
P( [tex]\bar X - 2.5758 \times {\frac{\sigma}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X +2.5758 \times {\frac{\sigma}{\sqrt{n} }[/tex] ) = 0.99
99% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X - 2.5758 \times {\frac{\sigma}{\sqrt{n} }[/tex] , [tex]\bar X +2.5758 \times {\frac{\sigma}{\sqrt{n} }[/tex] ]
= [ [tex]34 - 2.5758 \times {\frac{7}{\sqrt{15} }[/tex] , [tex]34 + 2.5758 \times {\frac{7}{\sqrt{15} }[/tex] ]
= [29.34 , 38.65]
Therefore, 99% confidence interval for the population mean is [29.34 , 38.65].