Respuesta :
Answer:
Therefore the solution is = k{-7,5,1} where k ∈R
Step-by-step explanation:
Given that,
f₁(x) =x
f₂(x)= x²
f₃(x)= 7x - 5x²
Also,
g(x) = c₁f₁(x)+c₂f₂(x)+c₃f₃(x)
Putting the values of f₁(x), f₂(x) and f₃(x).
g(x) = c₁.x+c₂x²+c₃(7x-5x²)
Given condition that g(x)= 0
∴ c₁.x+c₂x²+c₃(7x-5x²)=0
⇒(c₁+7c₃)x +(c₂-5c₃)x² = 0
Comparing the coefficients of x and x²
∴c₁+7c₃=0 and c₂-5c₃ =0
[tex]\Rightarrow c_1 =-7c_3[/tex] [tex]\Rightarrow c_2=5c_3[/tex]
Let c₃= k [k∈R]
Then c₁ = -7k and c₂=5k
Therefore the solution is = { c₁,c₂,c₃}
= {-7k, 5k, k}
=k{-7,5,1}
The required trivial solution set is [tex]\{(-7k,5k,k);k\ \epsilon \mathbb{R}}\}[/tex]
Trivial solution:
Trivial solutions are the solutions to some equations which have a simple structure.
Given that,
[tex]f_1(x)=x,f_2(x)=x^2,f_3(x)=7x-5x^2[/tex]
[tex]g(x)=c_1f_1(x)+c_2f_2(x)+c_3f_3(x)\\=c_1x+c_2x^2+c_3(7x-5x^2)\\=(c_1+7c_3)x+(c_2-5c_3)x^2\\g(x)=0\\c_1+7c_3=0\\c_2-5c_3=0[/tex]
Let [tex]c_3=k[/tex] then [tex]c_1=-7k,c_2=5k[/tex]
Hence, the solution set is,
[tex]\{(-7k,5k,k);k\ \epsilon \mathbb{R}}\}[/tex]
Learn more about the topic Trivial solution:
https://brainly.com/question/15120462