Answer:
[tex]\large \boxed{\text{0.0120 atm }}[/tex]
Explanation:
The balanced equation is
I₂(g) + Br₂(g) ⇌ 2IBr(g)
Data:
Kp = 280
p(IBr) = 0.200 atm
1. Set up an ICE table.
Let p = the initial pressure of IBr. Then
[tex]\begin{array}{ccccccc}\rm \text{I}_{2}& + & \text{Br}_{2} & \, \rightleftharpoons \, & \text{2IBr} & & \\0 & & 0 & & p & & \\+x & & +x & & -2x & &\\x & & x} & & 280 & & \\\end{array}[/tex]
2. Calculate p(I₂)
[tex]\begin{array}{rcl}K_{\text{p}}&=&\dfrac{p_{\text{IBr}}^{2}} {p_{\text{I}_2}^{2}}\\\\280&=&{\dfrac{0.200^{2}}{x^{2}}&&\\\\280x^{2} & = &0.0400\\x^{2} & = &\dfrac{0.0400}{280 }\\\\& = & 1.429 \times 10^{-4}\\x & = & \textbf{0.0120 atm}\\\end{array}\\\text{The partial pressure of iodine is $\large \boxed{\textbf{0.0120 atm }}$}[/tex]}
Check:
[tex]\begin{array}{rcl}{\dfrac{0.200^{2}}{0.0120^{2}}}&=&280\\\\280& =& 280\\\end{array}[/tex]