Answer:
pH = 2.03
Explanation:
The pH can be calculated using the following equation:
[tex] pH = -log [H_{3}O^{+}] [/tex] (1)
The concentration of H₃O⁺ is calculated using the dissociation constant of the next reaction:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺
1.00 M
[tex] K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]} [/tex]
Solving the above equation for H₃O⁺, we have:
[tex] [H_{3}O^{+}] = \frac{Ka*[CH_{3}COOH]}{[CH_{3}COO^{-}]} [/tex] (2)
The dissociation constant is equal to:
[tex]pKa = -log(Ka) \rightarrow Ka = 10^{-pKa} = 10^{-4.76} = 1.74 \cdot 10^{-5}[/tex]
Now, by solving the equation of the solubility product for Herbigon, we can find [CH₃COO⁻]:
CH₃COOX ⇄ CH₃COO⁻ + X⁺
5.00x10⁻³ M
[tex] K_{sp} = [CH_{3}COO^{-}][X^{+}] [/tex]
[tex][CH_{3}COO^{-}] = \frac{K_{sp}}{[X^{+}]} = \frac{9.40 \cdot 10^{-6}}{5.00 \cdot 10^{-3}} = 1.88 \cdot 10^{-3} M[/tex]
By entering the values of [CH₃COO⁻] and Ka, into equation (2) we can calculate [H₃O⁺]:
[tex][H_{3}O^{+}] = \frac{1.74 \cdot 10^{-5}*[1.00]}{[1.88 \cdot 10^{-3}]} = 9.26 \cdot 10^{-3} M[/tex]
Hence, the pH is:
[tex] pH = -log [H_{3}O^{+}] = -log [9.26 \cdot 10^{-3}] = 2.03 [/tex]
Therefore, the pH must be 2.03 to yield a solution in which the concentration of X⁺ is 5.00x10⁻³M.
I hope it helps you!