Answer:
So, the volume V is
[tex]V=\frac{14\pi}{3}[/tex]
Step-by-step explanation:
We have that:
[tex]y=7x\\\\y=0\\\\x=1\\\\x=-4\\[/tex]
We have the formula:
[tex]V=2\pi\int_a^b x(g(x)-f(x))\, dx\\\\g(x)>f(x).[/tex]
We calculate the volume V, we get
[tex]V=2\pi\int_a^b x(g(x)-f(x))\, dx\\\\V=2\pi\int_0^1 x(7x-0)\, dx\\\\V=2\pi\int_0^1 7x^2\, dx\\\\V=2\pi\cdot 7\left[\frac{x^3}{3}\right]_0^1\\\\V=14\pi\left(\frac{1}{3}-\frac{0}{3}\right)\\\\V=\frac{14\pi}{3}[/tex]
So, the volume V is
[tex]V=\frac{14\pi}{3}[/tex]
We use software to draw the graph.