Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the specified axis. y = 7 x , y = 0, x = 1; about x = −4

Respuesta :

Answer:

So, the volume V is

[tex]V=\frac{14\pi}{3}[/tex]

Step-by-step explanation:

We have that:

[tex]y=7x\\\\y=0\\\\x=1\\\\x=-4\\[/tex]

We have the formula:

[tex]V=2\pi\int_a^b x(g(x)-f(x))\, dx\\\\g(x)>f(x).[/tex]

We calculate the volume V, we get

[tex]V=2\pi\int_a^b x(g(x)-f(x))\, dx\\\\V=2\pi\int_0^1 x(7x-0)\, dx\\\\V=2\pi\int_0^1 7x^2\, dx\\\\V=2\pi\cdot 7\left[\frac{x^3}{3}\right]_0^1\\\\V=14\pi\left(\frac{1}{3}-\frac{0}{3}\right)\\\\V=\frac{14\pi}{3}[/tex]

So, the volume V is

[tex]V=\frac{14\pi}{3}[/tex]

We use software to draw the graph.

Ver imagen vlatkostojanovic
ACCESS MORE