Respuesta :
Answer:
The photons that burn, emit more energy.
Explanation:
The energy of the ultraviolet photons can be determined by means of the following equation:
[tex]E = h\nu[/tex] (1)
Equation 1 can be rewritten in terms of [tex]\lamba[/tex]
Since, [tex]c = \nu \lambda[/tex]
[tex]\nu = \frac{c}{\lambda}[/tex]
[tex]E = \frac{hc}{\lambda}[/tex] (2)
Where h is the planck's constant, c is the speed of light and [tex]\lambda[/tex] is the wavelength.
Case for the photon of with [tex]\lambda = 310nm[/tex]
[tex]\lambda = 310nm . \frac{1x10^{-9}m}{1nm}[/tex] ⇒ [tex]3.1x10^{-7}m[/tex]
[tex]E = \frac{hc}{\lambda}[/tex]
[tex]E = \frac{(6.626x10^{-34}J.s)(3x10^{8}m/s)}{3.1x10^{-7}m}[/tex]
[tex]E = 6.412x10^{-19}J[/tex]
Case for the photon of with [tex]\lambda = 280nm[/tex]
[tex]\lambda = 280nm . \frac{1x10^{-9}m}{1nm}[/tex] ⇒ [tex]2.8x10^{-7}m[/tex]
[tex]E = \frac{hc}{\lambda}[/tex]
[tex]E = \frac{(6.626x10^{-34}J.s)(3x10^{8}m/s)}{2.8x10^{-7}m}[/tex]
[tex]E = 7.099x10^{-19}J[/tex]
Hence, the photons that burn, emit more energy.