Answer:
the partial pressure of the [tex]PCl_5[/tex] at equilibrium is 1.25 atm
Explanation:
Initial pressure of the [tex]PCl_5 =2.75 atm[/tex]
The value of the equilibrium constant =[tex]K_p=1.81[/tex]
[tex]PCl_5(g)\rightleftharpoons PCl_3(g) + Cl_2(g)[/tex]
Initially
2.75 atm 0 0
At equilibrium
(2.74- x) x x
The expression for [tex]K_p[/tex] for the given reaction
[tex]K_p=\frac{p_{PCl_3}\times p_{Cl_2}}{p_{PCl_5}}[/tex]
we get:
[tex]1.81=\frac{x\times x}{2.75-x}x=1.50[/tex]
Pressure of the [tex]PCl_5[/tex] at equilibrium :
[tex]= (2.75 - p) atm \\= 2.75 - 1.50 atm \\= 1.25 atm[/tex]
Hence, the partial pressure of the [tex]PCl_5[/tex] at equilibrium is 1.25 atm