Answer : The value of [tex]E_{Ca^{2+}}=-61mV[/tex] and [tex]E_{Cl^{-1}}=-31.8mV[/tex]
Explanation :
To calculate the equilibrium potential we are using Nernst equation:
[tex]E_{ion}=\frac{61}{z}\times \log (\frac{C_o}{C_i})[/tex]
where,
[tex]E_{ion}[/tex] = equilibrium potential
z = valency of ion
[tex]C_o[/tex] = concentration of the ion outside the cell
[tex]C_i[/tex] = concentration of the ion inside the cell
Part a :
Given:
z = valency of ion [tex]Ca^{2+}[/tex] = 2
[tex]C_o[/tex] = concentration of the ion outside the cell = 1 mM
[tex]C_i[/tex] = concentration of the ion inside the cell = 100 mM
[tex]E_{Ca^{2+}}=\frac{61}{2}\times \log (\frac{1mM}{100mM})[/tex]
[tex]E_{Ca^{2+}}=-61mV[/tex]
Part b :
Given:
z = valency of ion [tex]Cl^{-1}[/tex] = 1
[tex]C_o[/tex] = concentration of the ion outside the cell = 110 mM
[tex]C_i[/tex] = concentration of the ion inside the cell = 10 mM
[tex]E_{Cl^{-1}}=\frac{61}{2}\times \log (\frac{110mM}{10mM})[/tex]
[tex]E_{Cl^{-1}}=-31.8mV[/tex]