Respuesta :
Answer:
1.5939 [tex]([/tex]Correct upto four desimal places[tex])[/tex]
Step-by-step explanation:
To obtain the large value at [tex]x_n=2.5[/tex] with small step length [tex]h=0.1[/tex] and [tex]x_0=2,y_0=1,x_n=2.5[/tex] , where [tex]x_n=x_0+nh[/tex] we have to use c-programme. The c-programme for Eular method is given below,
[tex]#[/tex]include[tex]<[/tex]stdio.h[tex]>[/tex]
float fun[tex]([/tex]float[tex]x[/tex], float[tex]y)[/tex]
[tex]{[/tex]
float [tex]f;[/tex]
[tex]f=3\times y+2\times x\timesy;[/tex]
return [tex]f;[/tex]
[tex]}[/tex]
main[tex]()[/tex]
[tex]{[/tex]
float [tex]a,b,x,y,h,t,k;[/tex]
printf[tex]("\nEnter[/tex] [tex]x_0,y_0,h,xn:");[/tex]
scanf[tex]("%f%f%f%f",&a,&b,&h,&t);[/tex]
[tex]x=a;[/tex]
[tex]y=b;[/tex]
printf[tex]("\n x \t y \t");[/tex]
while[tex](x<=t)[/tex]
[tex]{[/tex]
[tex]k=h\times fun(x,y);[/tex]
[tex]y=y+k;[/tex]
[tex]x=x+h;[/tex]
printf[tex]("%0.3f\t%0.3f\n",x,y);[/tex]
[tex]}[/tex]
[tex]}[/tex]
which will give required answer [tex]y(2.5)=[/tex], correct upto four desimal places.
The estimated solution of the initial-value problem is [tex]y(2.5) = 6.7809[/tex].
How to use Euler's method
The Euler's method is a multistage numerical method, to estimate a point of a given solution based on a given initial value. The expressions required in this method are presented below:
[tex]f(x_{i}, y_{i}) = \frac{dy}{dx}|_{P_{i}}[/tex] (1)
[tex]x_{i+1} = x_{i}+h[/tex] (2)
[tex]y_{i+1} = y_{i}+h\cdot f(x_{i}, y_{i})[/tex] (3)
Where [tex]h[/tex] is the step size.
Now we start iterating this differential equation:
Iteration 1
By (1):
[tex]f(x_{o},y_{o}) = 3\cdot (1) + 2\cdot (2)\cdot (1)[/tex]
[tex]f(x_{o},y_{o}) = 7[/tex]
By (2):
[tex]x_{1} = 2 + 0.1[/tex]
[tex]x_{1} = 2.1[/tex]
By (3):
[tex]y_{1} = 1 + 0.1\cdot 7[/tex]
[tex]y_{1} = 1.7[/tex]
Iteration 2
By (1):
[tex]f(x_{1},y_{1}) = 3\cdot (1.7) + 2\cdot (2.1)\cdot (1.7)[/tex]
[tex]f(x_{1},y_{1}) = 12.24[/tex]
By (2):
[tex]x_{2} = 2.1 + 0.1[/tex]
[tex]x_{2} = 2.2[/tex]
By (3):
[tex]y_{2} = 1 .7+ 0.1\cdot 12.24[/tex]
[tex]y_{2} = 2.924[/tex]
Iteration 3
By (1):
[tex]f(x_{2},y_{2}) = 3\cdot (2.924) + 2\cdot (2.2)\cdot (2.924)[/tex]
[tex]f(x_{2},y_{2}) = 21.638[/tex]
By (2):
[tex]x_{3} = 2.2 + 0.1[/tex]
[tex]x_{3} = 2.3[/tex]
By (3):
[tex]y_{3} = 2.2+ 0.1\cdot 21.638[/tex]
[tex]y_{3} = 4.3638[/tex]
Iteration 4
By (1):
[tex]f(x_{3},y_{3}) = 3\cdot (4.3638) + 2\cdot (2.3)\cdot (4.3638)[/tex]
[tex]f(x_{3},y_{3}) = 33.165[/tex]
By (2):
[tex]x_{4} = 2.3 + 0.1[/tex]
[tex]x_{4} = 2.4[/tex]
By (3):
[tex]y_{4} = 2.3+ 0.1\cdot 33.165[/tex]
[tex]y_{4} = 5.6165[/tex]
Iteration 5
By (1):
[tex]f(x_{4},y_{4}) = 3\cdot (5.6165) + 2\cdot (2.4)\cdot (5.6165)[/tex]
[tex]f(x_{4},y_{4}) = 43.8087[/tex]
By (2):
[tex]x_{5} = 2.4 + 0.1[/tex]
[tex]x_{5} = 2.5[/tex]
By (3):
[tex]y_{5} = 2.4+ 0.1\cdot 43.8087[/tex]
[tex]y_{5} = 6.7809[/tex]
The estimated solution of the initial-value problem is [tex]y(2.5) = 6.7809[/tex]. [tex]\blacksquare[/tex]
To learn more on Euler's method, we kindly invite to check this verified question: https://brainly.com/question/11325462