Answer:
[tex]w_{0}=14[/tex]
[tex]t=\frac{\pi }{14}[/tex]
Explanation:
Data
mass m= 100g
Length L= 5cm
we can use:
gm-kL= 0
divide both side by m
g - [tex]\frac{kL}{m}[/tex]=0
where
[tex]\frac{k}{m}[/tex] = [tex]\frac{g}{L}[/tex]
[tex]\frac{k}{m}=w_{0}[/tex]^{2}
so now
[tex]w_{0}^{2}[/tex] = [tex]\frac{9.8*100}{5}[/tex]
[tex]w_{0}^{2}=\frac{980}{5}[/tex]
[tex]w_{0}^{2}=196[/tex]
square both side
[tex]w_{0}=\sqrt{196}[/tex]
[tex]w_{0}=14[/tex]
We can apply:
u(t)=Acoswt +Bsinwt
u(t)=Acos14t +Bsin14t
u(0)=0 where A=0
therefore
u(0) = Bsin14t
[tex]u^{'}[/tex](0) = 10 ⇒ 10=14B ⇒ B=[tex]\frac{14}{10}[/tex] B=[tex]\frac{5}{7}[/tex]
so now u(t)=[tex]\frac{5}{7}[/tex]sin14t
so t will be:
t=[tex]\frac{\pi }{14}[/tex]
t=[tex]\frac{3.14}{14}[/tex]
t=0.22 seconds