A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, and if there is no damping, determine the position u of the mass at any time t. When does the mass first return to its equilibrium position

Respuesta :

Answer:

[tex]w_{0}=14[/tex]

[tex]t=\frac{\pi }{14}[/tex]

Explanation:

Data

mass m= 100g

Length L= 5cm

we can use:

gm-kL= 0

divide both side by m

g - [tex]\frac{kL}{m}[/tex]=0

where

[tex]\frac{k}{m}[/tex] = [tex]\frac{g}{L}[/tex]

[tex]\frac{k}{m}=w_{0}[/tex]^{2}

so now

[tex]w_{0}^{2}[/tex] = [tex]\frac{9.8*100}{5}[/tex]

[tex]w_{0}^{2}=\frac{980}{5}[/tex]

[tex]w_{0}^{2}=196[/tex]

square both side

[tex]w_{0}=\sqrt{196}[/tex]

[tex]w_{0}=14[/tex]

We can apply:

u(t)=Acoswt +Bsinwt

u(t)=Acos14t +Bsin14t

u(0)=0  where A=0

therefore

u(0) = Bsin14t  

[tex]u^{'}[/tex](0) = 10 ⇒ 10=14B ⇒ B=[tex]\frac{14}{10}[/tex] B=[tex]\frac{5}{7}[/tex]

so now u(t)=[tex]\frac{5}{7}[/tex]sin14t

so t will be:

t=[tex]\frac{\pi }{14}[/tex]

t=[tex]\frac{3.14}{14}[/tex]

t=0.22 seconds

ACCESS MORE