Answer with Explanation:
We are given that
Time, t=8.4 s
a.Angular momentum=[tex]6.7 kg m^2/s[/tex]
We know that torque acts on the particle
[tex]\tau=-\frac{dl}{dt}[/tex]
Where l=Angular momentum
Using the formula
[tex]\tau=\frac{d(6.7)}{dt}=0[/tex]
b.[tex]l=6.7 t^2kg m^2/s^3[/tex]
[tex]\tau=-\frac{d(6.7t^2)}{dt}=-13.4t[/tex]
Substitute t=8.4
[tex]\tau=-13.4(8.4)=-112.56 k N-m[/tex]
c.[tex]l=6.7t^{\frac{1}{2}} kgm^2/s^{\frac{3}{2}}[/tex]
[tex]\tau=-\frac{d(6.7t^{\frac{1}{2}})}{dt}=-6.7\times \frac{1}{2}t^{-\frac{1}{2}}[/tex]
[tex]\tau=-\frac{6.7}{2}(8.4)^{-\frac{1}{2}}=-1.155k N-m[/tex]
d.[tex]l=6.7t^{-2} kgm^2 s[/tex]
[tex]\tau=-\frac{d(6.7t^{-2})}{dt}=13.4 t^{-3}[/tex]
[tex]\tau=13.4(8.4)^{-3}=0.0226 k N m[/tex]