Respuesta :
Answer:
See detailed explanation.
Step-by-step explanation:
a) Recall that if a function is a pdf, then it must happen that [tex]\int_{-\infty}^{\infty} f(x) dx = 1[/tex]. Then,
[tex]\int_{-\infty}^{\infty} f(x) dx=\int_{1}^{\infty} \frac{k}{x^7} dx=\left.\frac{-1}{6} \frac{k}{x^6} \right|_1^{\infty} = \frac{1}{6}(\frac{k}{1^6}-0) = \frac{k}{6}=1[/tex]
which gives as k = 6.
b). Recall that [tex]F(x) = \text{Pr}(X\leq x ) = \int_{-\infty}^x f(t) dt[/tex] Then, F(x) =0 if [tex]x\leq 1 [/tex]. Then if x>1 we have from the previous point that
[tex]F(x) = \frac{1}{6}\left.(\frac{6}{t^6})\right|_{1}^x = 1- \frac{1}{x^6}[/tex]
c). We want to know [tex]\text{Pr}(X>2) = 1- \text{Pr}(X\leq 2) = 1- (1-\frac{1}{2^6}) = 0.016. [/tex]
The case [tex]\text{Pr}(2\leqX\leq 3) = F(3)-F(2) = 1-\frac{1}{3^6}-(1-\frac{1}{2^6}) =0.014[/tex]
d). We have that [tex]\mu = \text{E}(X), \sigma = \sqrt[]{\text{E}(X^2)-\text{E}(X)^2}[/tex]. Where, [tex]\text{E}(X^k)=\int_{-\infty}^{\infty}x^kf(x) dx[/tex]
Then,
[tex]\text{E}(X^k)=6\int_{1}^{\infty}\frac{x^k}{x^7} dx=6\int_{1}^{\infty}x^{k-7} dx = \frac{6}{k-6} x^{k-6} [/tex]
If k<6, then
[tex]=\frac{6}{k-6}(\left.\frac{1}{x^{6-k}})\right|_1^{\infty} = \frac{6}{k-6}(0-1) = \frac{6}{6-k}[/tex]
So, the mean (k=1) is 6/(6-1) = 6/5= 1.2 . And the standard deviation is [tex]\sqrt[]{\frac{6}{6-2}-1.2^2}= \sqrt[]{1.5-1.2^2} = 0.245[/tex].
e. We are asked for [tex]\text{Pr}(|X-\mu|\leq \sigma)[/tex] Which is equivalent to
[tex]\text{Pr}(-\sigma+\mu \leq X \leq \sigma+\mu ) =\text{Pr}(0.955 \leq X \leq 1.445 ) = F(1.445) - F(0.955) = F(1.445) = 1- \frac{1}{1.445^6} = 0.89[/tex]