Answer:
[tex]R = \{ \forall x \in \mathbf{R}|-\infty < x < \infty\}[/tex]
Step-by-step explanation:
The definition of derivative states that:
[tex]g'(t) = \lim_{h \to 0} \frac{g(t+h)-g(t)}{h}[/tex]
Then:
[tex]g'(t) = \lim_{n \to \infty} \frac{7\cdot (t+h)-7\cdot t}{h}[/tex]
[tex]g'(t) = \lim_{h \to 0} 7[/tex]
[tex]g'(t) = 7[/tex]
A constant function is a zero-order polynomial. The domain of any real polynomial is [tex]\mathbf{R}[/tex]. Then, the domain of the function is:
[tex]R = \{ \forall x \in \mathbf{R}|-\infty < x < \infty\}[/tex]