Answer:
So, we get that is P(A)=0.32.
Step-by-step explanation:
We know that:
[tex]P(B_1)=0.6\\\\P(B_2)=0.4\\\\P(A|B_1)=0.2\\\\P(A|B_2)=0.5\\[/tex]
We have the formula for probability:
[tex]P(A|B)=\frac{P(A\cap B)}{P(B)}\\\\\implies P(A\cap B)=P(A|B)\cdot P(B)[/tex]
So, we calculate:
[tex]P(A\cap B_1)=P(A|B_1)\cdot P(B_1)\\\\P(A\cap B_1)=0.2\cdot 0.6=0.12\\\\\\P(A\cap B_2)=P(A|B_2)\cdot P(B_2)\\\\P(A\cap B_2)=0.5\cdot 0.4=0.2\\[/tex]
We calculate:
[tex]P(A)=P((A\cap B_1)\cup(A\cap B_2))\\\\P(A)=P(A\cap B_1)+P(A\cap B_2)\\\\P(A)=0.12+0.2\\\\P(A)=0.32[/tex]
So, we get that is P(A)=0.32.